Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717749

RESUMO

The long-range periodic atomic arrangement or the lack thereof in solids typically dictates the magnitude and temperature dependence of their lattice thermal conductivity (κlat). Compared to crystalline materials, glasses exhibit a much-suppressed κlat across all temperatures as the phonon mean free path reaches parity with the interatomic distances therein. While the occurrence of such glass-like thermal transport in crystalline solids captivates the scientific community with its fundamental inquiry, it also holds the potential for profoundly impacting the field of thermoelectric energy conversion. Therefore, efficient manipulation of thermal transport and comprehension of the microscopic mechanisms dictating phonon scattering in crystalline solids are paramount. As quantized lattice vibrations (i.e., phonons) drive κlat, atomistic insights into the chemical bonding characteristics are crucial to have informed knowledge about their origins. Recently, it has been observed that within the highly symmetric 'averaged' crystal structures, often there are hidden locally asymmetric atomic motifs (within a few Å), which exert far-reaching influence on phonon transport. Phenomena such as local atomic off-centering, atomic rattling or tunneling, liquid-like atomic motion, site splitting, local ordering, etc., which arise within a few Å scales, are generally found to drastically disrupt the passage of heat carrying phonons. Despite their profound implication(s) for phonon dynamics, they are often overlooked by traditional crystallographic techniques. In this review, we provide a brief overview of the fundamental aspects of heat transport and explore the status quo of innately low thermally conductive crystalline solids, wherein the phonon dynamics is majorly governed by local structural phenomena. We also discuss advanced techniques capable of characterizing the crystal structure at the sub-atomic level. Subsequently, we delve into the emergent new ideas with examples linked to local crystal structure and lattice dynamics. While discussing the implications of the local structure for thermal conductivity, we provide the state-of-the-art examples of high-performance thermoelectric materials. Finally, we offer our viewpoint on the experimental and theoretical challenges, potential new paths, and the integration of novel strategies with material synthesis to achieve low κlat and realize high thermoelectric performance in crystalline solids via local structure designing.

2.
Nat Mater ; 23(4): 451-452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454026
3.
Angew Chem Int Ed Engl ; 63(16): e202315596, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400778

RESUMO

Efficient solar-driven syngas production (CO+H2 mixture) from CO2 and H2O with a suitable photocatalyst and fundamental understanding of the reaction mechanism are the desired approach towards the carbon recycling process. Herein, we report the design and development of an unique COF-topological quantum material nano-heterostructure, COF@TI with a newly synthesized donor-acceptor based COF and two dimensional (2D) nanosheets of strong topological insulator (TI), PbBi2Te4. The intrinsic robust metallic surfaces of the TI act as electron reservoir, minimising the fast electron-hole recombination process, and the presence of 6s2 lone pairs in Pb2+ and Bi3+ in the TI helps for efficient CO2 binding, which are responsible for boosting overall catalytic activity. In variable ratio of acetonitrile-water (MeCN : H2O) solvent mixture COF@TI produces syngas with different ratios of CO and H2. COF@TI nano-heterostructure enables to produce higher amount of syngas with more controllable ratios of CO and H2 compared to pristine COF. The electron transfer route from COF to TI was realized from Kelvin probe force microscopy (KPFM) analysis, charge density difference calculation, excited state lifetime and photoelectrochemical measurements. Finally, a probable mechanistic pathway has been established after identifying the catalytic sites and reaction intermediates by in situ DRIFTS study and DFT calculation.

4.
Angew Chem Int Ed Engl ; 63(11): e202401234, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38252519

RESUMO

Flexible thermoelectric devices of nanomaterials have shown a great potential for applications in wearable to remotely located electronics with desired shapes and geometries. Continuous powering up the low power flexible electronics is a major challenge. We are reporting a flexible thermoelectric module prepared from silver telluride (Ag2 Te) nanowires (NWs), which are chemically transformed from uniquely synthesized and scalable tellurium (Te) NWs. Conducting Ag2 Te NWs composites have shown an ultralow total thermal conductivity ~0.22 W/mK surpassing the bulk melt-grown Ag2 Te ~1.23 W/mK at ~300 K, which is attributed to the nanostructuring of the material. Flexible thermoelectric device consisting of 4 legs (n-type) of Ag2 Te NWs on polyvinylidene fluoride membrane displays a significant output voltage (Voc ) ~2.3 mV upon human touch and Voc ~18 mV at temperature gradient, ΔT ~50 K, which shows the importance of NWs based flexible thermoelectric devices to power up the low power wearable electronics.

5.
Adv Mater ; 36(6): e2307058, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010977

RESUMO

Achieving glass-like ultra-low thermal conductivity in crystalline solids with high electrical conductivity, a crucial requirement for high-performance thermoelectrics , continues to be a formidable challenge. A careful balance between electrical and thermal transport is essential for optimizing the thermoelectric performance. Despite this inherent trade-off, the experimental realization of an ideal thermoelectric material with a phonon-glass electron-crystal (PGEC) nature has rarely been achieved. Here, PGEC-like AgSbTe2 is demonstrated by tuning the atomic disorder upon Yb doping, which results in an outstanding thermoelectric performance with figure of merit, zT ≈ 2.4 at 573 K. Yb-doping-induced enhanced atomic ordering decreases the overlap between the hole and phonon mean free paths and consequently leads to a PGEC-like transport behavior in AgSbTe2 . A twofold increase in electrical mobility is observed while keeping the position of the Fermi level (EF ) nearly unchanged and corroborates the enhanced crystalline nature of the AgSbTe2 lattice upon Yb doping for electrical transport. The cation-ordered domains, lead to the formation of nanoscale superstructures (≈2 to 4 nm) that strongly scatter heat-carrying phonons, resulting in a temperature-independent glass-like thermal conductivity. The strategy paves the way for realizing high thermoelectric performance in various disordered crystals by making them amorphous to phonons while favoring crystal-like electrical transport.

6.
J Am Chem Soc ; 145(46): 25392-25400, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37942795

RESUMO

Defect engineering, achieved by precise tuning of the atomic disorder within crystalline solids, forms a cornerstone of structural chemistry. This nuanced approach holds the potential to significantly augment thermoelectric performance by synergistically manipulating the interplay between the charge carrier and lattice dynamics. Here, the current study presents a distinctive investigation wherein the introduction of Hg doping into AgSbTe2 serves to partially curtail structural disorder. This strategic maneuver mitigates potential fluctuations originating from pronounced charge and size disparities between Ag+ and Sb3+, positioned in octahedral sites within the rock salt structure. Hg doping significantly improves the phase stability of AgSbTe2 by restricting the congenital emergence of the Ag2Te minor secondary phase and promotes partial atomic ordering in the cation sublattice. Reduction in atomic disorder coalesced with a complementary modification of electronic structure by Hg doping results in increased carrier mobility. The formation of nanoscale superstructure with sizes (2-5 nm) of the order of phonon mean free path in AgSbTe2 is further promoted by reduced partial disorder, causes enhanced scattering of heat-carrying phonons, and results in a glass-like ultralow lattice thermal conductivity (∼0.32 W m-1 K-1 at 297 K). Cumulatively, the multifaceted influence of Hg doping, in conjunction with the consequential reduction in disorder, allows achieving a high thermoelectric figure-of-merit, zT, of ∼2.4 at ∼570 K. This result defies conventional paradigms that prioritize increased disorder for optimizing zT.

7.
ACS Appl Mater Interfaces ; 15(40): 46995-47003, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773059

RESUMO

Mg3Sb2-xBix solid-solutions represent an important class of thermoelectric (TE) materials due to their high efficiency and variable operating temperature range. Of particular significance for midtemperature applications is the Mg3Sb1.5Bi0.5 composition whose superior thermoelectric (TE) performance is attributed to the complex conduction band edge in conjunction with alloy dominated phonon scattering. In this work, we show that microstructure also plays a significant role in lowering the lattice thermal conductivity which in turn affects the overall TE performance (change in peak zT values between 1.1 and 1.4 have been observed). Temperature dependent TE properties of Mg3+xSb1.5Bi0.5 compositions with varying nominal Mg content (x = 0.2, 0.3, 0.4) have been studied. A marked reduction of the lattice thermal conductivity (κL) is observed in compositions with low nominal Mg content (x = 0.2), which is due to the presence of lamellar structures within the grains. These lamellar regions are isostructural to the matrix with a low misfit angle and represent compositional fluctuations in the Bi to Sb ratio. Both the size (200 nm-500 nm) and the interfacial strain contribute to the enhanced phonon scattering. A quantitative estimate of κL reduction due to these structures have been carried out using a mean free path (MFP) spectrum analysis which reveal a good match with experiments at room temperature. Further, the electrical properties are not influenced by these lamellar structures as observed from the similar power-factor (S2σ) and weighted mobilities in all of the compositions. This is due to their similar orientation to the adjacent matrix region. Thus, the zT parameter in the various compositions with similar carrier concentration can be significantly altered (∼25%) by adjusting the nominal Mg content. The results demonstrate that preferential phonon scattering by microstructure modification can be a new route for property improvement in Mg3+xSb2-yBiy solid-solutions.

8.
Angew Chem Int Ed Engl ; 62(40): e202308515, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37583094

RESUMO

Comprehension of chemical bonding and its intertwined relation with charge carriers and heat propagation through a crystal lattice is imperative to design compounds for thermoelectric energy conversion. Here, we report the synthesis of large single crystal of new p-type cubic AgSnSbTe3 which shows an innately ultra-low lattice thermal conductivity (κlat ) of 0.47-0.27 Wm-1  K-1 and a high electrical conductivity (1238 - 800 S cm-1 ) in the temperature range 294-723 K. We investigated the origin of the low κlat by analysing the nature of the chemical bonding and its crystal structure. The interaction between Sn(5 s)/Ag(4d) and Te(5p) orbitals was found to generate antibonding states just below the Fermi level in the electronic band structure, resulting in a softening of the lattice in AgSnSbTe3 . Furthermore, the compound exhibits metavalent bonding which provides highly polarizable bonds with a strong lattice anharmonicity while maintaining the superior electrical conductivity. The electronic band structure exhibits nearly degenerate valence-band maxima that help to achieve a high Seebeck coefficient throughout the measured temperature range and, as a result, the maximum thermoelectric figure of merit reaches to ≈1.2 at 661 K in pristine single crystal of AgSnSbTe3 .

9.
Chem Sci ; 14(26): 7161-7169, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37416708

RESUMO

Lead (Pb)-free layered double perovskites (LDPs) with exciting optical properties and environmental stability have sparked attention in optoelectronics, but their high photoluminescence (PL) quantum yield and understanding of the PL blinking phenomenon at the single particle level are still elusive. Herein, we not only demonstrate a hot-injection route for the synthesis of two-dimensional (2D) ∼2-3 layer thick nanosheets (NSs) of LDP, Cs4CdBi2Cl12 (pristine), and its partially Mn-substituted analogue [i.e., Cs4Cd0.6Mn0.4Bi2Cl12 (Mn-substituted)], but also present a solvent-free mechanochemical synthesis of these samples as bulk powders. Bright and intense orange emission has been perceived for partially Mn-substituted 2D NSs with a relatively high PL quantum yield (PLQY) of ∼21%. The PL and lifetime measurements both at cryogenic (77 K) and room temperatures were employed to understand the de-excitation pathways of charge carriers. With the implementation of super-resolved fluorescence microscopy and time-resolved single particle tracking, we identified the occurrence of metastable non-radiative recombination channels in a single NS. In contrast to the rapid photo-bleaching that resulted in a PL blinking-like nature of the controlled pristine NS, the 2D NS of the Mn-substituted sample displayed negligible photo-bleaching with suppression of PL fluctuation under continuous illumination. The blinking-like nature in pristine NSs appeared due to a dynamic equilibrium flanked by the active and in-active states of metastable non-radiative channels. However, the partial substitution of Mn2+ stabilized the in-active state of the non-radiative channels, which increased the PLQY and suppressed PL fluctuation and photo-bleaching events in Mn-substituted NSs.

10.
J Am Chem Soc ; 145(16): 9292-9303, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042625

RESUMO

Metavalent bonding has attracted immense interest owing to its capacity to impart a distinct property portfolio to materials for advanced functionality. Coupling metavalent bonding to lone pair expression can be an innovative way to propagate lattice anharmonicity from lone pair-induced local symmetry-breaking via the soft p-bonding electrons to achieve long-range phonon dampening in crystalline solids. Motivated by the shared chemical design pool for topological quantum materials and thermoelectrics, we based our studies on a three-dimensional (3D) topological insulator TlBiSe2 that held prospects for 6s2 dual-cation lone pair expression and metavalent bonding to investigate if the proposed hypothesis can deliver a novel thermoelectric material. Herein, we trace the inherent phononic origin of low thermal conductivity in n-type TlBiSe2 to dual 6s2 lone pair-induced intrinsic lattice shearing that strongly suppresses the lattice thermal conductivity to a low value of 1.1-0.4 Wm-1 K-1 between 300 and 715 K. Through synchrotron X-ray pair distribution function and first-principles studies, we have established that TlBiSe2 exists not in a monomorphous R-3m structure but as a distribution of distorted configurations. Via a cooperative movement of the constituent atoms akin to a transverse shearing mode facilitated by metavalent bonding in TlBiSe2, the structure shuttles between various energetically accessible low-symmetry structures. The orbital interactions and ensuing multicentric bonding visualized through Wannier functions augment the long-range transmission of atomic displacement effects in TlBiSe2. With additional point-defect scattering, a κlatt of 0.3 Wm-1 K-1 was achieved in TlBiSeS with a maximum n-type thermoelectric figure of merit (zT) of ∼0.8 at 715 K.

11.
Materials (Basel) ; 16(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837043

RESUMO

Layered Bi-misfit cobaltates, such as Bi2Sr2Co2Oy, are the natural superlattice of an electrically insulating rocksalt (RS) type Bi2Sr2O4 layer and electrically conducting CoO2 layer, stacked along the crystallographic c-axis. RS and CoO2 layers are related through charge compensation reactions (or charge transfer). Therefore, thermoelectric transport properties are affected when doping or substitution is carried out in the RS layer. In this work, we have shown improved thermoelectric properties of spark plasma sintered Bi2Sr2-xCaxCo2Oy alloys (x = 0, 0.3 and 0.5). The substitution of Ca atoms affects the thermal properties by introducing point-defect phonon scattering, while the electronic conductivity and thermopower remain unaltered.

12.
Materials (Basel) ; 16(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770135

RESUMO

Sulfides and selenides of copper and silver have been intensively studied, particularly as potentially efficient thermoelectrics. Ag3CuS2 (jalpaite) is a related material. However very little is known about its physical properties. It has been found that the compound undergoes several structural phase transitions, having the tetrahedral structural modification I41/amd at room temperature. In this work, its band structure, phonon spectrum and thermoelectric properties were studied theoretically and experimentally. Seebeck coefficient, electrical conductivity and thermal conductivity were measured in a broad temperature range from room temperature to 600 K. These are the first experimental data on transport properties of jalpaite. Ab initio calculations of the band structure and Seebeck coefficient were carried out taking into account energy dependence of the relaxation time typical for the scattering of charge carriers by phonons. The results of the calculations qualitatively agree with the experiment and yield large values of the Seebeck coefficient characteristic for lightly doped semiconductor. The influence of intrinsic defects (vacancies) on the transport properties was studied. It was shown that the formation of silver vacancies is the most probable and leads to an increase of hole concentration. Using the temperature dependent effective potential method, the phonon spectrum and thermal conductivity at room temperature were calculated. The measurements yield low lattice thermal conductivity value of 0.5 W/(m K) at 300 K, which is associated with the complex crystal structure of the material. The calculated room temperature values of the lattice thermal conductivity were also small (0.14-0.2 W/(m K)).

13.
J Am Chem Soc ; 145(2): 1349-1358, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36595558

RESUMO

Chemical bonding present in crystalline solids has a significant impact on how heat moves through a lattice, and with the right chemical tuning, one can achieve extremely low thermal conductivity. The desire for intrinsically low lattice thermal conductivity (κlat) has gained widespread attention in thermoelectrics, in refractories, and nowadays in photovoltaics and optoelectronics. Here we have synthesized a high-quality crystalline ingot of cubic metal halide CuBiI4 and explored its chemical bonding and thermal transport properties. It exhibits an intrinsically ultralow κlat of ∼0.34-0.28 W m-1 K-1 in the temperature range 4-423 K with an Umklapp crystalline peak of 1.82 W m-1 K-1 at 20 K, which is surprisingly lower than other copper-based halide or chalcogenide materials. The crystal orbital Hamilton population analysis shows that antibonding states generated just below the Fermi level (Ef), which arise from robust copper 3d and iodine 5p interactions, cause copper-iodide bond weakening, which leads to reduction of the elastic moduli and softens the lattice, finally to produce extremely low κlat in CuBiI4. The chemical bonding hierarchy with mixed covalent and ionic interactions present in the complex crystal structure generates significant lattice anharmonicity and a low participation ratio in low-lying optical phonon modes originating mostly from localized copper-iodide bond vibrations. We have obtained experimental evidence of these low-lying modes by low-temperature specific heat capacity measurement as well as Raman spectroscopy. The presence of strong p-d antibonding interactions between copper and iodine leads to anharmonic soft crystal lattice which gives rise to low-energy localized optical phonon bands, suppressing the heat-carrying acoustic phonons to steer intrinsically ultralow κlat in CuBiI4.

14.
Chem Sci ; 13(34): 9952-9959, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36128238

RESUMO

Self-trapping of excitons (STE) and concomitant useful broadband emission in low-dimensional metal halides occur due to strong electron-phonon coupling, which exhibit potential applications in optoelectronics and solid-state lighting. Lattice softness and high anharmonicity in the low-dimensional structure can lead to transient structural distortion upon photoexcitation that should promote the spatial localization or trapping of charge carriers, which is essential for STE. Herein, we report the ligand-assisted reprecipitation synthesis of ultrathin (∼3.5 nm) two-dimensional (2D) metal halide, RbPb2Br5 nanoplates (NPLs), which demonstrate highly Stokes shifted and broadband emission covering most parts of the visible to near IR range (500-850 nm) with a long-lived photoluminescence (PL) lifetime. The excitation wavelength independent emission and emission wavelength independent excitation spectra along with the analogous PL decay kinetics of bulk and NPLs suggest the intrinsic nature of broadband emission. The experimental low sound velocity (∼1090 m s-1) and associated low bulk and shear moduli (10.10 and 5.51 GPa, respectively) indicate the large anharmonicity and significantly soft lattice structure, which trigger the broadband STE emission in 2D NPLs of RbPb2Br5. Strong electron-longitudinal optical (LO) phonon coupling results in broadband STE emission in 2D RbPb2Br5 NPLs.

15.
Adv Mater ; 34(40): e2203725, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36028167

RESUMO

Single crystals of SnSe have gained considerable attention in thermoelectrics due to their unprecedented thermoelectric performance. However, polycrystalline SnSe is more favorable for practical applications due to its facile chemical synthesis procedure, processability, and scalability. Though the thermoelectric figure of merit (zT) of p-type bulk SnSe polycrystals has reached >2.5, zT of n-type counterpart is still lower and lies around ≈1.5. Herein, record high zT of 2.0 in n-type polycrystalline SnSe0.92  + x mol% MoCl5 (x = 0-3) samples is reported, when measured parallel to the spark plasma sintering pressing direction due to the simultaneous optimization of n-type carrier concentration and enhanced phonon scattering by incorporating modular nano-heterostructures in SnSe matrix. Modular nanostructures of layered intergrowth [(SnSe)1.05 ]m (MoSe2 )n like compounds embedded in SnSe matrix scatters the phonons significantly leading to an ultra-low lattice thermal conductivity (κlat ) of ≈0.26 W m-1 K-1 at 798 K in SnSe0.92  + 3 mol% MoCl5 . The 2D layered modular intergrowth compound resembles the nano-heterostructure and their periodicity of 1.2-2.6 nm in the SnSe matrix matches the phonon mean free path of SnSe, thereby blocking the heat carrying phonons, which result in low κlat and ultra-high thermoelectric performance in n-type SnSe.

16.
Nat Commun ; 13(1): 5053, 2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030224

RESUMO

As the periodic atomic arrangement of a crystal is made to a disorder or glassy-amorphous system by destroying the long-range order, lattice thermal conductivity, κL, decreases, and its fundamental characteristics changes. The realization of ultralow and unusual glass-like κL in a crystalline material is challenging but crucial to many applications like thermoelectrics and thermal barrier coatings. Herein, we demonstrate an ultralow (~0.20 W/m·K at room temperature) and glass-like temperature dependence (2-400 K) of κL in a single crystal of layered halide perovskite, Cs3Bi2I6Cl3. Acoustic phonons with low cut-off frequency (20 cm-1) are responsible for the low sound velocity in Cs3Bi2I6Cl3 and make the structure elastically soft. While a strong anharmonicity originates from the low energy and localized rattling-like vibration of Cs atoms, synchrotron X-ray pair-distribution function evidence a local structural distortion in the Bi-halide octahedra and Cl vacancy. The hierarchical chemical bonding and soft vibrations from selective sublattice leading to low κL is intriguing from lattice dynamical perspective as well as have potential applications.

17.
Angew Chem Int Ed Engl ; 61(41): e202210783, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35971950

RESUMO

Intrinsically low lattice thermal conductivity (κlat ) while maintaining the high carrier mobility (µ) is of the utmost importance for thermoelectrics. Topological insulators (TI) can possess high µ due to the metallic surface states. TIs with heavy constituents and layered structure can give rise to high anharmonicity and are expected to show low κlat . Here, we demonstrate that Bi1.1 Sb0.9 Te2 S (BSTS), which is a 3D bulk TI, exhibits ultra-low κlat of 0.46 Wm-1 K-1 along with high µ of ≈401 cm2  V-1 s-1 . Sound velocity measurements and theoretical calculations suggest that chemical bonding hierarchy and high anharmonicity play a crucial role behind such ultra-low κlat . BSTS possesses low energy optical phonons which strongly couple with the heat carrying acoustic phonons leading to ultra-low κlat . Further, Cl has been doped at the S site of BSTS which increases the electron concentration and reduces the κlat resulting in a promising n-type thermoelectric figure of merit (zT) of ≈0.6 at 573 K.

18.
Chem Mater ; 34(13): 5860-5873, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35844633

RESUMO

The dearth of n-type sulfides with thermoelectric performance comparable to that of their p-type analogues presents a problem in the fabrication of all-sulfide devices. Chalcopyrite (CuFeS2) offers a rare example of an n-type sulfide. Chemical substitution has been used to enhance the thermoelectric performance of chalcopyrite through preparation of Cu1-x Sn x FeS2 (0 ≤ x ≤ 0.1). Substitution induces a high level of mass and strain field fluctuation, leading to lattice softening and enhanced point-defect scattering. Together with dislocations and twinning identified by transmission electron microscopy, this provides a mechanism for scattering phonons with a wide range of mean free paths. Substituted materials retain a large density-of-states effective mass and, hence, a high Seebeck coefficient. Combined with a high charge-carrier mobility and, thus, high electrical conductivity, a 3-fold improvement in power factor is achieved. Density functional theory (DFT) calculations reveal that substitution leads to the creation of small polarons, involving localized Fe2+ states, as confirmed by X-ray photoelectron spectroscopy. Small polaron formation limits the increase in carrier concentration to values that are lower than expected on electron-counting grounds. An improved power factor, coupled with substantial reductions (up to 40%) in lattice thermal conductivity, increases the maximum figure-of-merit by 300%, to zT ≈ 0.3 at 673 K for Cu0.96Sn0.04FeS2.

19.
J Am Chem Soc ; 144(23): 10099-10118, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35652915

RESUMO

Efficient manipulation of thermal conductivity and fundamental understanding of the microscopic mechanisms of phonon scattering in crystalline solids are crucial to achieve high thermoelectric performance. Thermoelectric energy conversion directly and reversibly converts between heat and electricity and is a promising renewable technology to generate electricity by recovering waste heat and improve solid-state refrigeration. However, a unique challenge in thermal transport needs to be addressed to achieve high thermoelectric performance: the requirement of crystalline materials with ultralow lattice thermal conductivity (κL). A plethora of strategies have been developed to lower κL in crystalline solids by means of nanostructural modifications, introduction of intrinsic or extrinsic phonon scattering centers with tailored shape and dimension, and manipulation of defects and disorder. Recently, intrinsic local lattice distortion and lattice anharmonicity originating from various mechanisms such as rattling, bonding heterogeneity, and ferroelectric instability have found popularity. In this Perspective, we outline the role of manipulation of chemical bonding and structural chemistry on thermal transport in various high-performance thermoelectric materials. We first briefly outline the fundamental aspects of κL and discuss the current status of the popular phonon scattering mechanisms in brief. Then we discuss emerging new ideas with examples of crystal structure and lattice dynamics in exemplary materials. Finally, we present an outlook for focus areas of experimental and theoretical challenges, possible new directions, and integrations of novel techniques to achieve low κL in order to realize high-performance thermoelectric materials.

20.
Angew Chem Int Ed Engl ; 61(15): e202200071, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35137508

RESUMO

Understanding the correlations of both the local and global structures with lattice dynamics is critical for achieving low lattice thermal conductivity (κlat ) in crystalline materials. Herein, we demonstrate local cationic off-centring within the global rock-salt structure of AgSbSe2 by using synchrotron X-ray pair distribution function analysis and unravel the origin of its ultralow κlat ≈0.4 W mK-1 at 300 K. The cations are locally off-centered along the crystallographic ⟨ 100 ⟩ direction by about ≈0.2 Å, which averages out as the rock-salt structure on the global scale. Phonon dispersion obtained by density functional theory (DFT) shows weak instabilities that cause local off-centering distortions within an anharmonic double-well potential. The local structural distortion arises from the stereochemically active 5s2 lone pairs of Sb. Our findings open an avenue for understanding how the local structure influences the phonon transport and facilitates the design of next-generation crystalline materials with tailored thermal properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...